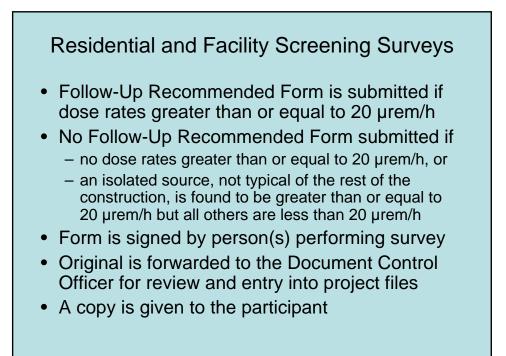
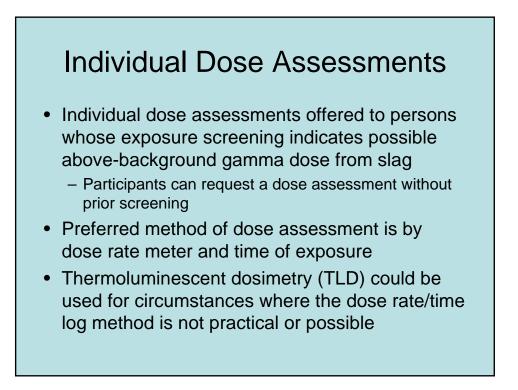
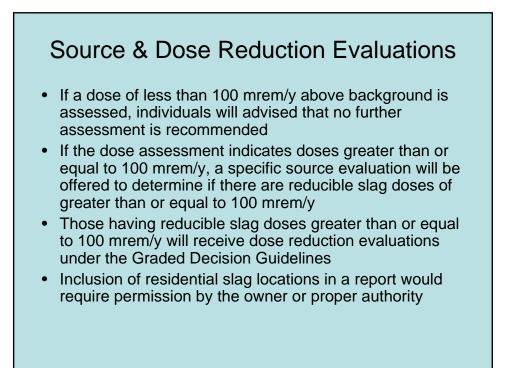
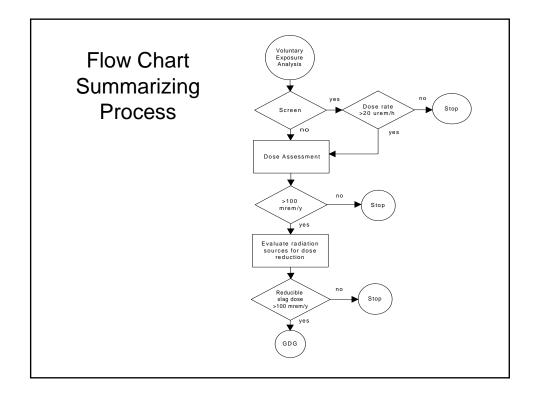
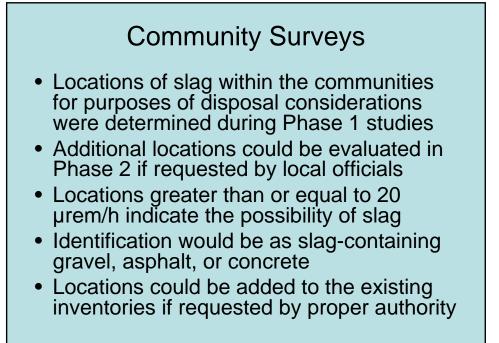

Current Implementation of the Graded Decision Guidelines (Phase 2)

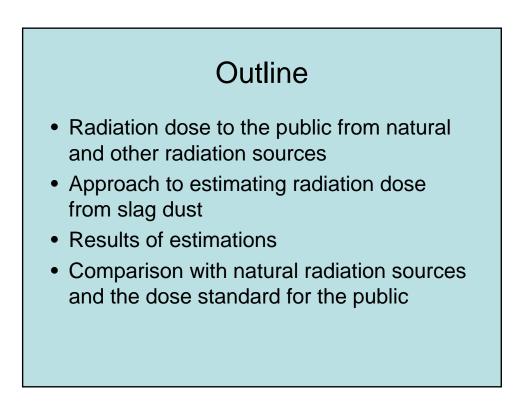

> Tom Gesell, PhD Professor of Health Physics March 21, 2013


Background
 Phase 1 of the Exposure Study began in June 1996 By early 1998 community surveys completed individual participation requests met inquiries and participation requests much reduced level of effort much reduced Phase 2 replaced Phase 1 of the Study on Jan 1, 1999 most field work to be done by local consultant oversight by Auxier & Associates, Inc (A&A Inc) Procedures essentially the same as for Phase 1 Auxier & Associates remains responsible for maintaining records, developing reports and interfacing with the Companies If survey backlogs develop, A&A Inc to supplement local consultant's field work

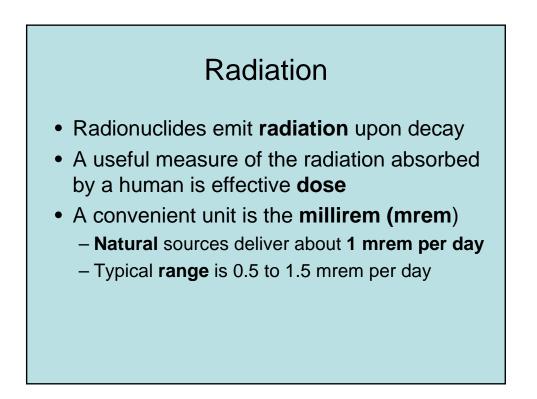


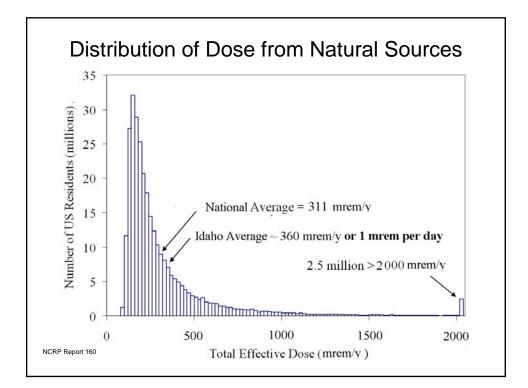

Residential and Facility Screening Surveys

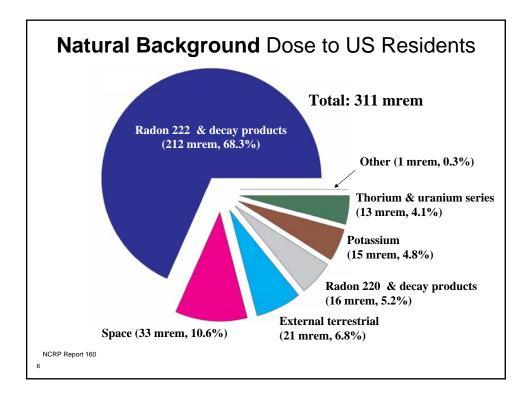

- Locations are screened for dose rates greater than or equal to 20 µrem/h
 - this criterion based on the Graded Decision Guideline of 100 mrem/y above background
- A dose rate of 20 µrem/h indicates slag may be present
- Source is presumed to be slag if not shown otherwise

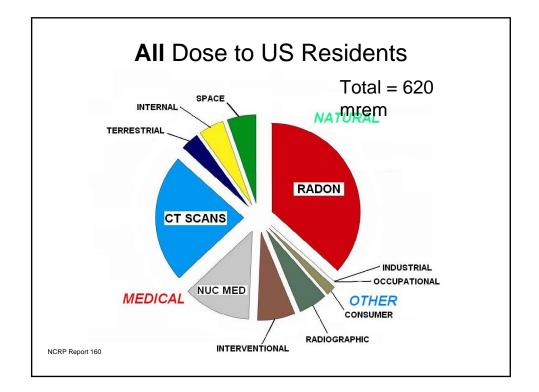


Potential Radiation Exposure to Street Operations Staff from Inhaling Fugitive Dust that Includes Slag Particles

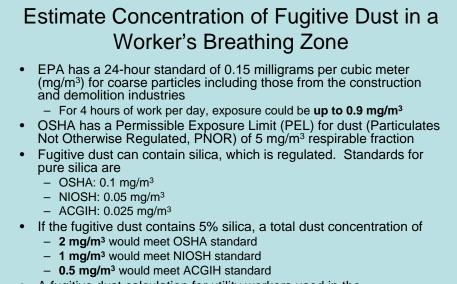

> Tom Gesell, PhD Professor of Health Physics

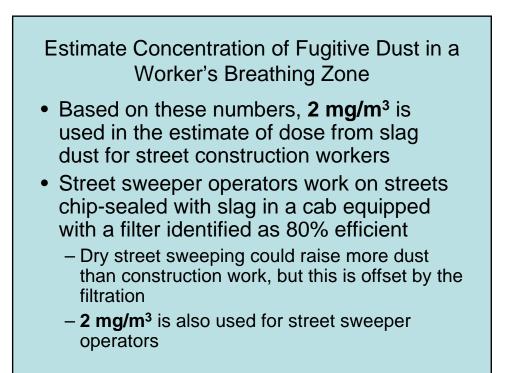

> > March 21, 2013

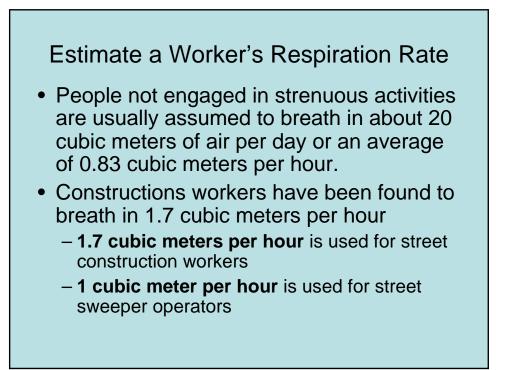



Radioactive Material

- Radioactivity is a measure of the rate at which a radionuclide decays
- A convenient unit is the picocurie (pCi)
 - 2.2 decays per minute
 - Houses usually contain a few pCi of radon per liter of air
 - The rocks and soil of the earth typically contain several pCi of natural radionuclides per gram
 - Phosphorus Slag contains the radionuclides that occur naturally in all earthen materials, but at somewhat higher levels than occur in most in rocks and soils







Approach to Estimating Radiation Dose from Slag Dust Concentration of fugitive dust in a worker's breathing zone A worker's respiration rate Hours per year that workers are exposed to fugitive dust Annual mass intake of fugitive dust Concentrations of natural radionuclides in slag Radionuclide intake from fugitive slag dust Annual radiation dose expected from intake of fugitive slag dust

 A fugitive dust calculation for utility workers used in the Supplemental Human Health Risk Assessment leads to an estimate of 1.34 mg/m³

Estimate Hours per Year that Workers are Exposed to Fugitive Dust

- Street Operations Staff
 - -Construction: 300 hours per year
 - -Street sweeping: 600 hours per year

Estimate Annual Mass Intake of Fugitive Dust

Factor	Units	Street Construction Worker	Street Sweeper Operator
Breathing rate	m ³ per hour	1.7	1
Working time	hours per year	300	600
Estimated dust concentration	mg/m ³	2	2
Inhaled mass	grams per year	1.02	1.20

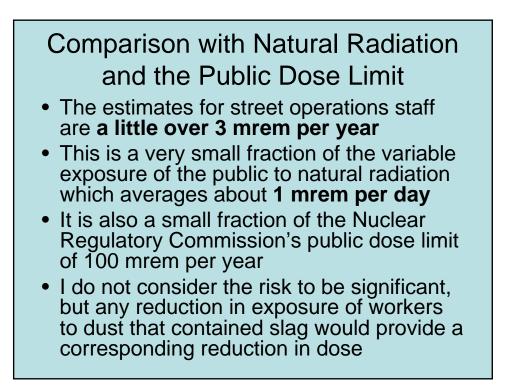
Determine Concentrations of Natural Radionuclides in Slag

• Measured Concentrations from the Supplemental Human Health Risk Assessment (pCi per gram)

Nuclide	# of samples	Min	Max	Midpoint
Uranium-238	32	21.3	37.9	29.6
Radium-226	26	6.8	34.8	20.8
Lead-210	95	5.0	19.8	12.4
Polonium-210	22	8.3	23.7	16.0

• Concentrations chosen for this analysis

Nuclide	Nominal value
Uranium-238	30.0
Radium-226	25.0
Lead-210	25.0
Polonium-210	25.0


Estimate Radio	onuclide Intak Slag Dust	te from F	ugitive
Factor	Units	Street Construction Worker	Street Sweeper Operator
Inhaled mass	grams per year	1.02	1.2
U-238 concentration	pCi/g	30.0	30.0
U-234 concentration	pCi/g	30.0	30.0
Th-230 concentration	pCi/g	30.0	30.0
Ra-226 concentration	pCi/g	25.0	25.0
Pb-210 concentration	pCi/g	25.0	25.0
Po-210 concentration	pCi/g	25.0	25.0
Total U-238	pCi/year	30.6	36.0
Total U-234	pCi/year	30.6	36.0
Total Th-230	pCi/year	30.6	36.0
Total Ra-226	pCi/year	25.5	30.0
Total Pb-210	pCi/year	25.5	30.0
Total Po-210	pCi/year	25.5	30.0

Estimate Annual Radiation Dose Expected From Intake of Fugitive Slag Dust

Factor	Units	Street Construction	Street Sweeper
		Worker	Operator
Total U-238	pCi/year	30.6	36.0
Total U-234	pCi/year	30.6	36.0
Total Th-230	pCi/year	30.6	36.0
Total Ra-226	pCi/year	25.5	30.0
Total Pb-210	pCi/year	25.5	30.0
Total Po-210	pCi/year	25.5	30.0
EPA Dose Coefficient U-238	mrem/pCi	0.011	0.011
EPA Dose Coefficient U-234	mrem/pCi	0.013	0.013
EPA Dose Coefficient Th-230	mrem/pCi	0.052	0.052
EPA Dose Coefficient Ra-226	mrem/pCi	0.013	0.013
EPA Dose Coefficient Pb-210	mrem/pCi	0.004	0.004
EPA Dose Coefficient Po-210	mrem/pCi	0.012	0.012
U-238 annual dose	mrem	0.32	0.38
U-234 annual dose	mrem	0.39	0.46
Th-230 annual dose	mrem	1.58	1.86
Ra-226 annual dose	mrem	0.33	0.38
Pb-210 annual dose	mrem	0.10	0.12
Po-210 annual dose	mrem	0.31	0.36
Total Annual dose	mrem	3.04	3.58

Some Reasons Why these Results are Likely to be Overestimates

- The dust is assumed to be pure slag but in most cases the slag component of dust will be diluted with other materials or the dust may not contain slag
- Workers will likely not be exposed to the estimated dust concentration for all of their working hours
- A fraction of the dust particles are likely to be too large to deposit in the lung

